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Abstract. We study a one-dimensional extended Hubbard-Peierls model in the infinite 
intracell Coulomb repulsion limit, which is equivalent to a system of spinless electrons. 
We consider first- and second-neighbour Coulomb repulsion, and two types of phonon 
are coupled to the electronic system: intramolecular and longitudinal, intercell vibrations. 
The special case of half an electron per cell is considered. The model is solved in the 
Hartree-Fock approximation by assuming a possible symmetry break of period two. The 
solution is obtained for all temperatures. We construct a phase diagram with respect to 
temperature and the system parameters. Three types of low temperature ordered phase 
appear: bond ordered waves (BOW), charge ordered waves (COW) and an intermediate 
phase, across which the transition BOW -+ cow is continuous. This phase corresponds 
to a ferroelectric state (F). As temperature is increased from zero, the system undergoes 
different phase transitions, following a particular sequence, according to its characteristic 
parameters. At high temperatures the system stabilises in a homogeneous (disordered) 
phase (H). For some parameters the sequence BOW -+ F -+ cow -t H is possible. The last 
result is very striking, since it implies that, on increasing temperature, the symmetry of 
the system can decrease, as is the case for the BOW + F transition, where the inversion 
symmetry is lost. This special BOW -+ F phase transition also occurs in the non-interacting 
limit, where our results are exact. 

1. Introduction 

One-dimensional electronic systems coupled to lattice deformations have been exten- 
sively studied in the literature both experimentally and theoretically over the last two 
decades [l-201. Models with different degrees of complexity have been introduced, and 
various types of solution have been attempted. 

Three main aspects determining physical properties of these systems must be 
considered: the number of conduction electrons per cell, n; the importance of Coulomb 
repulsion compared with the bare bandwidth; and the types of electron-phonon 
coupling. Roughly, these coupling types may be related to local variations in the 
intercell distances [l-151 (and thus, to changes in the electronic transference integral) 
or low-energy intramolecular deformations [ 16-20] (associated with a local change in 
molecular electronic affinity). 

The temperature (T) is another obvious external element to be considered in 
determining the stable state of the system [15,18], although a great amount of existing 
literature is devoted only to the T = 0 K case. 
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According to the Peierls [l] prediction, the lattice deformation acquires a mod- 
ulation of wavevector 2kF in the non-interacting limit, but with increasing intrasite 
Coulomb repulsion it changes continuously [13,18] into a 4kF modulation, thus giving 
rise to a Wigner crystal. In general, the broken-symmetry lattice period depends criti- 
cally on both the electronic concentration, n, and the relative magnitudes of different 
Coulomb repulsions [12,13,18]. Locking to a simple commensurate period is also 
present [ 12,181. 

Ignoring spin degrees of freedom, these one-dimensional lattices mainly develop two 
types of broken symmetry: bond ordered waves (BOW) or charge ordered waves (COW). 
A BOW corresponds to a periodic altemance of molecular distances, and it is stabilised 
by a strong intermolecular phonon-electron coupling. On the other hand, a COW 
corresponds to an altemance in molecular electronic occupancy, and it is favoured by 
a strong electron-zlectron first-neighbour Hubbard repulsion; also an intramolecular 
soft mode stabilises COW. 

The properties and relative stability of BOW and COW have been studied in the 
literature for different systems. In the case n = 1 some stability criteria have been 
obtained [ l l ,  171. Also the magnitude of BOW distortions has been analysed in terms 
of Coulomb interactions for n = 1 [8-10,193, n = i [14,18], and other n-values. 
Intermediate values of intracell (n = 1 case) and first-neighbour (n = 0.5,l cases) 
Coulomb repulsion increase the magnitude of BOW, while a strong Coulomb interaction 
inhibits BOW. However, going beyond the extended Hubbard [21] model, the Coulomb 
repulsion always seems to inhibit BOW [lo]. 

In the limit of infinite intracell repulsion U, the extended Hubbard-Peierls model 
is equivalent to a spinless electronic system [13,16]; as long as we do not focus on 
magnetic properties [13]. In this case, and for n = f, the distortion wave has period two 
(say, a wavevector 2kF for spinless fermions, or equivalently, 4kF for spin f). However, 
a long range Coulomb repulsion can lead to a period-four wave [16], and the same is 
true for a large but not infinite value of U [13]. 

In this case of spinless electrons, and in a nearly rigid lattice at low temperature, 
a cow with period two is stable for G, > 2t, Gj = 0 and n = f [14]. Here t is the 
electronic transference energy and Gj is the Coulomb repulsion between electrons j 
sites apart. For other values of n and long range Coulomb repulsion, more complicated 
cow are possible [11,18,21]. However, as lattice deformations are included, BOW are 
also possible. Working on this case of spinless electrons in finite rings at T = 0, 
Gagliano et a1 [14] have obtained a BoW/COW stability map in terms of GI and 
a parameter that accounts for intercell deformations ; they do not include on-cell 
(molecular) deformations. Their map shows an intermediate region where COW and 
BOW coexist; but the boundary of this intermediate zone is not sharply established. 
Kivelson [4] has also obtained coexistence between BOW and cow in a non-interacting 
Peierls model with on-cell and intercell displacements. He also worked at T = 0. This 
BOW-COW coexistence implies a breakdown of crystal inversion symmetry, and thus, 
the appearance of static electric dipoles that give rise to a ferroelectric phase (hereafter 
denoted by F). 

In this work we study a spinless one-dimensional fermion gas, n = 1, for which 
first- and second-neighbour repulsions are included, and also intramolecular and inter- 
molecular phonon-fermion interactions are considered. 

The calculations are for arbitrary temperatures. The Hartree-Fock (HF) approx- 
imation is used, including its exchange contribution, which, in this work plays an 
important role. 
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We make the assumption of 2k,  (period-two) distortions, which is appropriate for 
moderate second-neighbour interaction [ 161. 

We obtain the phase diagram in terms of the system parameters and temperature. 
At low temperatures there are BOW and COW stability regions, and between them, a 
small ferroelectric zone, which accounts for the continuous change from BOW to cow. 
At high temperature the disordered, homogeneous phase (H) is stable. 

On increasing temperature, the H region is attained through different phase se- 
quences, according to the parameter values that characterise the system. In particular, 
for some values the sequence BOW + F -+ COW + H occurs as temperature is increased. 
The last case is remarkable, since it implies a symmetry decrease as temperature is 
increased; in fact, the F phase lacks inversion symmetry. We note that this result 
remains valid in the non-interacting limit, where our treatment is exact. 

We display the phase diagram by drawing different slices of the parameter space; 
the order parameters characterising each phase are also displayed. 

The plan of this work is as follows: in section 2 the model is introduced and solved 
in the HF approximation; in section 3 the results are presented and a comparison is 
made with the exact solution for a small cluster; in section 4 the results are discussed 
and summarised. 

2. The model 

Our starting point is a spinless electron system, with half an electron per crystalline 
cell; its dynamics is described by a generalised Hubbard-Peierls model with electronic 
hopping between neighbouring sites, and Coulomb repulsion between first and second 
neighbours. We also introduce couplings between electrons and two types of vibrational 
degrees of freedom : intra- and intercell deformations. The Hamiltonian has the form 

where cf creates a spinless fermion in site I, n, = cfc, is the number of particles in I, G, 
and G, are the Coulomb repulsions between first and second neighbours respectively, 
U,+, - uI and vI represent intermolecular and intramolecular distortions, and I ,  g are 
their respective couplings to the electrons. The last term in (1) is the potential energy 
of the vibrations. 

According to [19], the zero-point quantum fluctuations are small in many actual 
systems. So, we disregard the ionic kinetic energy in (1) (adiabatic approximation), 
and thus the coordinates uI, vl behave as classical parameters, which adopt the values 
that minimise the Helmholtz free energy F [ U I ,  q]. Applying the Hellmann-Feynman 
theorem, the equilibrium values for these variables can be evaluated : 

8F/auI  = 0 = 2g((cfc1)) + kul (2)  

(3)  a F / a v l  = 0 = A((nl)) + Qvr 

where ((. . .)) represents the thermal quantum averaging. 
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Now, in order to obtain a diagonalisable bilinear Hamiltonian we apply the Hartree- 
Fock (HF) approximation to the Coulomb electron4ectron interaction: 

1 I 

At this point we introduce the hypothesis of a period-two distortion, motivated 
by the electronic density n = i and the condition G2 e i G l  [16]. We do that by 
postulating the averages 

((c:c/+~)) = z j  + (-l)'Aj j = 1,2 
((q)) = + ( - i ) T  

Here r measures the fluctuation of charge in site 1. Using relations (2) and (3) it is 
seen that A measures the fluctuation of molecular distance along the chain, and r is 
proportional to fluctuations in the intramolecular degree of freedom U/. We remark 
that I i and A I $. The case r = 1 represents a saturated COW, with charges 0 and 
1 alternating. For A1 = it holds that 71 = $ and then the electronic delocalisation 
((cjcl+l)) alternates between 0 and i; thus, in this limit the system breaks into N / 2  
molecular dimers, without electronic exchange between different dimers. 

Substituting (2)-(6) in relation (l), we obtain the effective Hamiltonian 

fiefi = - x { [ W  + (-1)'GA1]cfc~+~ + G2[72 + (--1)'A2]c:c1+2 + HC} - VTz( - l ) ' f i r .  
1 1 

(7) 

Here HC symbolises the Hermitian conjugated operator, and 

G = G, + iDB 

V =2(Gl-G,)+Dc=2G+D 

W = t + G7, 

with 

and 

Dc = A2/Q D, = 4g2/K (9) 

D = Dc - DB - 2G. (10) 

We note that the effective electronic transference, W, has been increased in relation to 
the 'bare' transference t by an exchange HF contribution. 

The Hamiltonian (7) is easily diagonalised in the Bloch representation, because 
it only mixes momenta k and k + n. In the new reduced Brillouin zone scheme, 
-n/2 I k I 7112, the eigenvalues are 

W: = -2G272 cos(2k) i- {4W2 cos2 k + 4G2Ai sin2 k + [ V T  + 2G,A, ~os (2k) ]~} ' /~ .  
(11) 
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Thus, in general, a gap may be present between the lower (filled) and upper (empty) 
bands, stabilising the distorted phase at low temperatures. In the case 2, = 0 the 
particle-hole symmetry is preserved [4,22], W; = - Wkf and the energy gap existence 
is assured. 

The Helmholtz free energy in the HF approximation is evaluated in the standard 
way, giving 

k T  
7TN 

F = -B C log{ 1 + exp[-( W f  - p)/kgT]) + G(t: + A;) + G2(2; + Ai)  + & Vr2 
k t = i  

(12) 

where p is the chemical potential and the sum runs from -n/2 to n/2. 

F with respect to r j , A j  and r. In particular, one finds 
The self-consistency equation for the averages ( 5 )  and (6) is obtained by minimising 

2, = cos(2k) [f ( Wkf) + f ( W J ]  
nN k 

(13) 

where f({) = 1/{ 1 + exp[({ - p)/kgT]} is the Fermi distribution. 
However, if electron-hole symmetry holds, in this special case where n = 1, it 

implies that p = 0, and so f ( W r )  = 1 -f(Wkf) (the number of k-electrons in the lower 
band coincide with the number of k-holes in the upper band). By introducing this 
relation in (13), we conclude 2, = 0, which, in turn, implies the electron-hole symmetry. 
Thus, the 2, = 0 hypothesis is self-consistent, and we shall choose this solution in our 
case, G ,  < i G l ,  because the effect of a non-vanishing 2, is to reduce (and eventually 
close) the energy gap between bands W r  and Wkf, see (11); the latter points to the 
destabilisation of an ordered solution [22], and to an increase in the Helmholtz free 
energy. Moreover, we have verified that a spontaneous breakdown of electron-hole 
symmetry is only stable for G, < &Cl in the isotropic, period-one solution. Incidentally, 
we note that the same restriction holds for the stability of a period-four COW [16]. 

The other averages, obtained by minimising F, obey the self-consistency relations 

n / 2  1 
dk - [VT + 2G,A, cos(2k)l tanh ‘=kL wk 

1 =I2 1 
dk - [2GA, sin2(k)] tanh = G L  wk 

n / 2  1 
dk - [2 W cos2(k)] tanh 

wk 

[VT + 2G,A, cos(2k)l tanh (3) 1 ‘I2 cos(2k) 
A 2 = - - L  dk- 

wk 

where wk = WZ. We have numerically estimated the upper bound A, < 0.08; thus, 
for G, -= i G l  the contribution of G2A2 to the one-particle energy Wf is negligible. 
Hereafter A, = 0 and A, =: A; this is the only approximation in our calculations apart 
from the HF approximation. It only remains to solve the set of equations (14)-(16). 
When a pure BOW (r = 0), or COW (A = 0) phase is stable, the set of equations reduce 
to two. 
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In the F phase (r # 0,A # 0) a simple relation for T holds: 

as is easily verified from (14)-(16). Thus, in this case the number of equations also 
reduces to two. 

At this point we note that the seven initial parameters have been reduced to 
three in the HF approximation: t ,  D and G. The first one is related to the electronic 
delocalisation, although it appears renormalised by the exchange HF contribution, 
t + W = t + GT, .  This ‘band broadening’ (due mainly to first-neighbour repulsion G,) 
seems not to be a spurious effect, as the present results and [23] suggest. We shall take 
t = 1 as a scaling choice. 

The parameter D = D ,  - D B  -2G, is important in detecting the stable phase at low 
temperature; if the intermolecular Hooke constant K is very small, then DB + -CO, 

D -+ -CO and a BOW is stable. The same is also true for a large value of G,, as second- 
neighbour repulsion prevents a period-two COW from stabilising. If the intramolecular 
elastic constant is very soft instead, Q -+ 0, D ,  -+ CO and D -+ +CO, thus stabilising a 
cow. Also, a large value of G stabilises a cow. 

3. Results 

We shall analyse the most stable self-consistent solution for the order parameters r, A 
and z across the bidimensional space parameter of the system (G, D) ,  and for different 
temperatures (t  = 1 is our energy unit). 

We shall consider the four types of solution previously introduced: COW (A = 0), 
BOW (r = 0), F (r # 0, A # 0) and homogeneous, H (r = A = 0); and analyse their 
relative stability in parameter space. We shall also evaluate the order parameters, r 
and A, in each region. The numerical analysis of (14)-(16) leads us to the results 
outlined below. 

3.1. The phase diagram 

In the following we describe the regions of the three-dimensional parameter space 
G-D-T where the different phases of our system, BOW, F, cow and H, are stable. 

3.1 . l .  The T = 0 case. At T = 0 the COW is stable for D > 0 and arbitrary values of 
G > 0 (G is always positive as can be inferred from (8)). 

For fixed G and decreasing D,  we have a transition to a ferroelectric state at 
D = D l ( G ) ,  and a second transition to a bond wave at D = D2(G).  In figure 1 these two 
zone boundaries are depicted as full curves. In the limit G >> 1, we get D,(G)  - -G, 
and D,(G)  - D,(G) - 0.02G. For small G-values, the ferroelectric zone is very narrow, 
[D , (G)  - D , ( G ) ] / G  < 0.02. 

3.1.2. Temperature dependence of the phase boundaries. In order to display the tem- 
perature dependence of the phase boundaries, we intersect the parameter space with 
D-T planes for G = 3.5 (figure 2(a)) and G = 41 (figure 2(b)), and draw on these 
planes the different stable phases. Obviously, in both parts of the figure the upper zone 
represents the homogeneous phase, while the three lower zones represent, from left to 
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D +  G 

BOW 

G 

BOW 

lbl 

I .  50 

T 5.00 

2.50 

0 

0 

Figure 1. A projection of the phase dia- 
gram in the (G,D) plane. For magnifica- 
tion purposes the axes give G and G + D .  
The BOW, ferroelectric (F) and COW phases 
are indicated. The full curves are the phase 
boundaries at T = 0, while the dotted 
curve corresponds to the condition that 
critical temperatures for BOW and COW co- 
incide (see text). 

Figure 2. Slices of the phase diagram with 
(D, T) planes. The homogeneous (H), BOW, 
ferroelectric (F) and cow phases are indi- 
cated. The full (dotted) curves represent 
the stable (metastable) phase boundaries. 
(U)  G = 3.5; (b) G = 41. 

right, the BOW, F and cow phases respectively. ‘The homogeneous zone is separated 
from the BOW and cow zones by the critical temperature curves, T,(G) and T,(G,D) 
respectively, the first appearing as a horizontal line in the diagrams of figure 2. These 
critical temperature curves are continued into dotted traces, indicating the boundaries 
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between the homogeneous and metastable ordered phases, the latter with lower T, 
than the stable phase. 

We also see from figures 2(a) and 2(b) that ferroelectric zone becomes narrower as 
T increases, and it reduces to just a point, (DF(G), TF(G)), at the critical temperature 
where the two order parameters vanish, r = A = 0. 

At that point (the ‘vertex’ of the F phase), the BOW and cow critical temperature 
curves intersect, T,[G, DF(G)]  = T,(G) TF(G). 

In the case G = 3.5, the ferroelectric zone has a horn shape, with its vertex being to 
the left of the BOW-F boundary. In the case G = 41 the vertex lies between the BOW-F 
and F-COW boundaries. 

In order to obtain more general insight, in figure 1 the ‘ferroelectric vertex’ is 
projected onto the G-D plane, D,(G), as the dotted curve therein. It should be stressed 
that the ferroelectric vertex lies to the left of the BOW-F, T = 0 boundary if G < 5.75, 
and it lies between the BOW-F and F-cOW boundaries for G > 5.75. In this way, for 
G e 5.75 and a suitable D-value, the following sequence of phase transitions can take 
place: BOW -+ F -+ COW -+ H, as can be seen from figure 2(a). This is a surprising 
result, as the F phase (which lacks inversion symmetry) has lower symmetry than the 
BOW phase. 

, 

0 

Figure 3. Critical temperature versus D for 
G = 7 (upper curve) and G = 3.5 (lower 
curve). The right (left) side corresponds to 
the cow -+ H (BOW 4 H) transition. 

3.1.3. Critical temperature. In figure 3 we represent the critical temperature versus D 
for G = 3.5 and G = 7.0 (lower and upper curves respectively); the left hand side of the 
figure corresponds to the BOW + H transition (horizontal curve), while the right hand 
side corresponds to the cow + H transition. 

We note that, as other properties of the BOW, its critical temperature does not 
depend on D.  

3.2. Order parameters 

In figure 4(a) we show the dependence of the BOW parameters t and A on G; we 
choose T = 0 there. It can be seen that t - a + &; A - a - $ for G -+ a; in this 
way the electronic transference between two dimers, tI,l+l = t - A, becomes negligible 
in this case. The latter limit is attained for a very narrow conduction band, G % t ,  and 
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0.32 

T 

0.24 

0.16 
a- 

0.08 

0 
G 

lbl .--- , . , I  u.44 - 

0.33 ' 

I 

7 0.22 

a 
I- 

i 
0.11 ' 

Figure 4. Order parameters at T = 0. 
(a) 7 and A versus G for the BOW phase. 
(b) A (full curve), (broken curve) and 
the electronic transference between dimers 
z - A (dotted curve) versus D for G = 41; 
here the system crosses from BOW Oeft) 
to cow (right) through the ferroelectric - 39.20 - 38.95 - 38.70 

0 phase. 

for a small Hooke constant under lattice contractions, K + 0. As is quite natural on 
physical grounds, the last condition assures the stability of the BOW, say as D + -00, 

and thus D < D,(G) N -G (see (8)-(10)). 
In figure 4(b) the parameters r, A and z - A are displayed for T = 0, G = 41 and 

D crossing the transition region BOW + F + cow. There it is apparent that the system 
changes continuously from a nearly dimerised BOW (left), with T - A N 0, to an almost 
saturated cow (right), for which r N 1. In the cow phase, r increases with D and G ;  
if G or D goes to infinity, r + 1. 

In figure 5 the temperature dependence of the order parameters A (full curve) and 
r (broken curve) is depicted. There G = 3.5 and D = -2.388; in accordance with 
figure 2(a), the system moves over the four phases as T is increased. In fact, for 
0 < T < 0.4024 the system is a BOW, A # 0, I' = 0. For 0.402 < T e 0.494 the two 
order parameters coexist, A # 0, # 0, in a ferroelectric phase. At T = 0.494, A 
vanishes and r shows a kink; from then on, decreases continuously, reaching the 
cow -+ H transition at T = 0.546. 

It holds that the order parameters A and vanish according to the law, (T,  - T)0.5, 
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0.16 

0.12 

0.08 a 
U 

0.04 

0 
T 

Figure 5. The order parameters versus 
temperature for G = 3.5 and D = -2.388; 
the system follows the sequence of phase 
transitions BOW -P F -.* cow -P H as T is 
increased. 

thus showing a typical critical exponent of the Hartree-Fock approximation. 

3.3. Comparison with some exact results 

In spite of its simplicity, the HF approximation has severe limitations, especially for 
studying excited states [24]. Nevertheless, HF is currently used on these one-dimensional 
systems [5,6,17].  In order to analyse its accuracy, we have studied a four-atom, two- 
spinless-electron system described by our Hamiltonian. We have solved it exactly and 
in the HF approximation, since in this way a comparison of both results is a good 
measure of the failures of HF, as the finite size effects influence both solutions at the 
same level. The exact results for this four-atom cluster depend on D, and DB (see (10)) 
separately, in contrast to the H F  results. 

Figure 6(a) shows the H F  and exact results for r in the cow phase; there G = 3,  
D, = 0 and 0 I D, S 2. The heavy curve represents H F  results for 0 5 T I; 0.9, as 
a variation of T in this range leads to a change in I' of less than 1%. This curve 
coincides precisely with the T = 0 exact result for r. As T is increased, the exact cow 
solution is stable only up to a certain critical value of D,; for example, at T = 0.5 
(broken curve) the COW, r # 0, solution exists if D, > 0.75, while for T = 0.9 (dotted 
curve), r # 0 for D, > 1.31. 

In this way, the finite size exact results suggest that the temperature breaks down 
the ordered phases faster than predicted by HF analysis. It should be stressed that the 
exact results for the four-atom system always yield a critical temperature T, < D, for 
the cow + H transition. This result strongly contrasts with the H F  solution for both 
finite and infinite systems. However, the last results are not surprising, since it is well 
known that HF solutions tend to maintain the ordered phases beyond their physical 
range of stability. 

In figure 6(b) the phase diagram of the four-atom system is shown in the (D,, DB) 
plane for G,  - G, = 0. 

The full curves indicate the COW-% (right) and F-BOW (left) boundaries. As in 
figure 1, the dotted curve represents the condition that the critical temperature of cow 
and BOW phases coincide. 

In figure 6(b) we see that the dotted curve lies in the ferroelectric zone for D, < 2.3 
and it crosses the cow zone for D, > 2.3. This non-interacting, N = 4, case may 
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4 

4.40 

3.30 

2.20 

1.10 

0 

//y "' 

(61 

BOW 

0.75 1.50 2.25 

Figure 6. Exact results for a four-site system. (a) The order parameter r in the cow phase. 
Here DB = 0, G = 3.5 and T = 0 (full curve), T = 0.5 (broken curve) and T = 0.9 (dotted 
curve). Also, the full curve corresponds (within the figure resolution) to HF results for these 
three temperature values. (b) A projection of phase diagram in the (Dc,DB) plane for 
Gz - G1 = 0. The phases and curves are as given in figure 1. For convenience, the distance 
between the COW-F boundary and the other curves is magnified by a factor of 10 in the 
vertical direction, the first curve remaining unchanged. 

be compared directly with the HF, N = 00, results, as these are also exact in the 
G, = G, = 0, G = 40, case. We see that the effect of the finite size is to push 
the TB = T, dotted curve into the COW phase. The results of figure 6(b),  as other 
calculations for G, # G,, show that the sequence of phases cow + F + BOW + H with 
increasing temperature is possible for the four-site ring, especially for G > t, in contrast 
with the N = 00 results. However, as the N = 00 HF calculations are not reliable for 
large values of G;  we cannot assert whether the cow + F transition is a spurious finite 
size effect (as suggested by the G = 0 results), or if it remains in the N = 00 limit. 
It is important to note that, due to degeneracy of the ground state [14], the N = 4 
results are not very suitable for extrapolation to macroscopic systems. Calculations 
with larger finite size systems are needed to elucidate this point. 
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4. Summary and discussion 

We now list the main results and limitations of the present work. 

(i) There is a great richness of phase transitions as the system parameters and 
temperature are changed. We notice the existence of a breakdown of symmetry with 
increasing temperature, in the sequence of phase transitions BOW + F + COW + H (see 
figures 2(a) and 5). Parametric phase transitions are also apparent; these transitions may 
be found experimentally by choosing a particular system near the stability boundary, 
and then applying pressure in order to change the system parameters [4], in particular 
the hopping integral t .  Obviously, our work suggests an easier experimental method 
for searching for these transitions-say a simple variation of temperature. 

Although it is not usual to find a symmetry breakdown on increasing temperature, 
this phenomenon is not new [25]. The re-entrant superconductivity [26] is a remarkable 
example of an ordered phase attained by an increase of temperature. 

It is important to note that a suitable treatment of a ferroelectric phase must 
include the effect of molecular polarisability due to a dipole electric field. So, for an 
actual system, the latter must increase the stability region of ferroelectricity obtained 
in our calculations, thus facilitating the search for it in actual systems. 

(ii) The validity of the conclusion in point (i) is ensured in the non-interacting 
limit, where the parameters of figures 1-5 must be interpreted as D = D ,  - DB and 
G = i D B .  They also seem reliable in the weak interaction limit. For G,,G, > t ,  the 
HF approximation departs from its range of validity. Then, it is no longer a suitable 
description of the system in terms of the reduced parameters D and G of (9). 

(iii) Our finite size results confirm the general expectation that the HF approximation 
works better for systems with a gap between the ground state and the first excited 
states [5,24], and for low temperatures. Although the coincidence between exact and 
HF results for a four-site ring in a COW state at T = 0 seems fortuitous, our hope is 
that HF is specially suitable in this phase and for low temperature, a hope which is 
supported by previous results [23]. In this way, the band broadening due to the HF 
exchange term, t + t + z G ,  seems not to be a spurious effect. 

(iv) It is important to introduce both, intra- and intersite lattice degrees of freedom, 
as the intramolecular parameter D ,  = A2/Q contributes in determining the phase 
boundaries [4]. The importance of the intrasite degrees of freedom is apparent from 
our reduced HF parameter D = D ,  - DB - 2G, of figures 1-5, and from our exact 
calculations of figure 6(b) .  This contribution must be considered in theoretical models 
in order to describe realistic quasi-one-dimensional systems. 
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